

Library Book Management System

Te am B: SWEN - 2 Design Project R 262

Charles Barber, Nicholas Feldman, Christopher Lim,

Anthony Palumbo, Edward Wong

SWEN-262 Library Book Management System Release 2 Team B

2

 2017-04-18

Table of Contents

Table of Contents ... 2

SUMMARY ... 3

REVISION TABLE ... 3

PROBLEM STATEMENT ... 4

SYSTEM REQUIREMENTS .. 4

FEATURE REQUIREMENTS .. 5

DOMAIN MODEL .. 7

ORIGINAL ... 7

UPDATED ... 7

ARCHITECTURAL MODEL .. 8

SUBSYSTEM DESIGN ... 9

COMMAND SUBSYSTEM ... 9

MODELS SUBSYSTEM ..13

SEARCH SUBSYSTEM ...16

VIEWS SUBSYSTEM ...17

CONTROLLERS SUBSYSTEM..19

APPENDIX .. 30

Main ...30

Commands..31

Controllers ..40

Models ...50

Search ..54

Views ...56

SWEN-262 Library Book Management System Release 2 Team B

3

 2017-04-18

SUMMARY

REVISION TABLE

Revision

Number

Revision Date Summary Author

0.1 02/14/2017 Domain Model Anthony Palumbo

0.2 02/16/2017 Nouns & Verbs, Knowns & Unknowns Charles Barber, Edward

Wong

0.3 02/21/2017 Design Pattern Usage Nicholas Feldman

1.0 02/22/2017 Initial Creation and Changes Christopher Lim

1.1 02/03/2017 State vs. Strategy Nicholas Feldman

1.2 03/02/2017 Design Evaluation Anthony Palumbo

1.3 03/03/2017 Added UML Class Diagrams Nicholas Feldman

1.4 03/10/2017 Updated UML Class Diagrams Anthony Palumbo

1.5 03/10/2017 Added Feature Requirements Christopher Lim

1.6 03/11/2017 Added Subsystem Design Charles Barber

1.7 03/11/2017 Added Design Pattern Usage to Subsystems Nicholas Feldman

1.8 03/15/2017 Updated UML Class Diagrams Anthony Palumbo

1.9 03/15/2017 Added Architecture Model Christopher Lim

1.10 03/15/2017 Added CRC Cards Edward Wong

1.11 03/17/2017 Added Sequence Diagrams Anthony Palumbo,

Charles Barber

1.12 03/17/2017 Updated Domain Model Anthony Palumbo

1.13 03/19/2017 Completed CRC Cards Anthony Palumbo,

Edward Wong

1.14 03/20/2017 Formatted Document Christopher Lim

2.0 04/03/2017 Fixed Grammatical Issues Charles Barber

2.1 04/05/2017 Updated Requirements for R2 and Domain Model Christopher Lim

2.2 04/07/2017 Removed ViewState Charles Barber

2.3 04/08/2017 Updated UML Class Diagrams Anthony Palumbo,

Nicholas Feldman

2.4 04/08/2017 Updated UML Sequence Diagram Anthony Palumbo,

Charles Barber

2.5 04/15/2017 Added New CRC Cards Edward Wong

SWEN-262 Library Book Management System Release 2 Team B

4

 2017-04-18

2.6 04/15/2017 Added Description of Library State
Implementation

Edward Wong

2.7 04/16/2017 Added Description of Proxy Implementation Nicholas Feldman

2.8 04/16/2017 Added new design patterns to document Anthony Palumbo

2.9 04/17/2017 Corrected and Expanded Prose Christopher Lim,

Anthony Palumbo

3.0 04/18/2017 Formatted Document Christopher Lim

4.0 04/18/2017 Completed Changed Document, all sections

affected

Anthony Palumbo

PROBLEM STATEMENT

Design and implement the Library Book Management System (LBMS). The LBMS is Book Worm Library’s

(BWL) system for providing book information to users, tracking library visitor statistics for a library

statistics report, tracking checked out books, and allowing the library inventory to be updated. It is the

server-side system that provides an API used by client-side interfaces that BWL employees use.

SYSTEM REQUIREMENTS

At a high-level this project will be source controlled on GitHub, in a private repository until after the

project is over, and implemented in Java as a desktop application. It will be compatible with the

standard Java 1.8 SDK installed on the RIT SE lab machines. The system does not require or use any form

of external database, persisting only in standard Java constructs. The system will be delivered as an

executable jar file and require no network connection to function. A batch file, start.bat, will be provided

to set any required environment variables, perform any program specific initialization, and execute the

graphical user interface for the program. Another file, startAPI.bat, will be provided to run only the API

version of the project that takes in requests and prints out the responses. This version is particularly

useful for other developers who may need to run a specific part of the project without the graphical user

interface. On a clean exit the program will either produce or update a file named data.ser, this contains

all the serialized data for the system and can be deleted to get a clean start of the program.

SWEN-262 Library Book Management System Release 2 Team B

5

 2017-04-18

FEATURE REQUIREMENTS

No. User Story Name Description

1 API The LBMS shall use text-based requests and responses. An LBMS exchange

consists of one text string sent by a client followed by one text string sent by

the system. The system shall receive requests from a client as text strings. A

client shall terminate request strings with a semicolon (;) character. If the

exchange is a partial client request, i.e. does not end with a termination

character, the system response shall indicate that it received the partial client

request and the system shall wait to receive the remainder of the request in

the next one or more exchanges. If the exchange completes a client request,

the system shall perform the requested operation, and provide a response for

the request according to the LBMS server reply format specification.

2 Visitor Registration The LBMS will require that first time visitors to the library register. The system

will store the following information for each visitor: first name, last name,

address, phone number, and a visitor ID (a unique 10-digit ID generated upon

visitor registration).

3 Visits The LBMS shall keep track of visits by visitors. The system shall keep track of

the time each visitor spends at the library during each visit. (Information will

be used for statistical data in library reports.)

4 Operational Hours The library opens at 08:00 every day. All visits in progress are automatically

ended when the library closes at 19:00 when visitors remaining in the library

are asked to leave. Visits do not extend over multiple days.

5 Searching The LBMS shall respond to queries for book information. The system shall store

book data for all books currently in BWL’s possession. Book data shall consist

of: isbn, title, author (can be multiple authors), publisher, published date, page

count, number of copies, and number of copies currently checked out. The

system shall respond with all information matching the provided search

parameters in the order requested in the query. The client can request an

ordering by title, publish date, and book status (i.e. not checked out). The

system shall respond with an empty string when there are no books matching

the query.

6 Checking out The LBMS shall track checked out books by visitors. The system shall allow

each visitor to checkout a maximum of 5 books at a time. Each book may be

checked out for a maximum of 7 days. The system will store the data of the

book check out transaction with the following information: isbn, visitor ID,

date checked out, due date.

7 Fines The LBMS shall apply an initial $10.00 fine to all books 1 day overdue.

Subsequently, $2.00 will be added to the initial fee for each additional week

overdue, up to a maximum fine of $30.00.

SWEN-262 Library Book Management System Release 2 Team B

6

 2017-04-18

8 Statistics Report The LBMS shall respond to queries for an informational report of the library.

The system shall respond to a statistical query with the following information

about a queried month at the library:

i. The number of books currently owned by the library.

ii. The number of visitors registered at library.

iii. The average amount of time spent at the library for a visit. iv. The

books purchased for the specified month.

 v. The amount of money collected through checked out book fines

9 Advance Time The LBMS shall support a feature to track and advance time. On initial startup,

the LBMS system will record the date and time. The LBMS system shall track

the number of days that have passed while the system is in operation. The

LBMS system shall allow users to move the date forward by a specified number

of days. The time of day will remain unaffected. The system will also allow for

the advancement of the time by a specified number of hours. Upon each date

change the system will generate a report of any overdue books (checked out by

users past the due date).

10 Clean Shutdown The LBMS system shall provide a mechanism for a “clean” shutdown of the

system. The system shall end any visits in progress at system shutdown and

persist all data at system shutdown.

11 Startup The LBMS system shall restore persistent state on startup. Any state previously

stored will be restored on startup.

12 Concurrent Client

Connections

The LBMS shall support operations provided by multiple, concurrent clients. A

client will be prompted to log in immediately upon establishing a connection

and will be automatically logged out upon disconnecting. Each client

connection will be separate in the sense that the library will handle all request

and response exchanges for each client, individually. Actions taken by

individual clients that change the state of the system will affect other clients

(e.g. borrowing books will affect book availability for all clients).

13 Client Accounts The system shall store client account for visitors and employees. An account

represents the username, password, and role for an individual visitor. Each

account will have different access permissions depending on the type (either

visitor or employee). Employees will have access to the entire system while

visitors who are not employees will only be able to begin a visit, end a visit,

search the library, and borrow a book in addition to basic system tasks (e.g.

connect, log in, log out, etc.).

14 Undo/Redo The LBMS system shall support the ability to undo and redo actions by any

user. The actions that support the undo/redo functionality are the following:
Begin Visit, End Visit, Purchase Book, Borrow Book, Return Book, and Pay Fine.

SWEN-262 Library Book Management System Release 2 Team B

7

 2017-04-18

15 Purchase Book

Source

The LBMS will now allow employees to choose between a provided books.txt

file and Google Books as a source of books available for the library to purchase.

In the case of using Google Books as a source of books, only books labeled as

for sale in the US will be available for purchase.

DOMAIN MODEL

ORIGINAL

UPDATED

SWEN-262 Library Book Management System Release 2 Team B

8

 2017-04-18

ARCHITECTURAL MODEL

The following model displays the interactions between each main package forming the entire system.

We tried to organize the subsystems by package, however each package does not directly correlate to a

subsystem. The entry point into the system is through LBMS, which is dependent on the views package

as it is displayed to the user as a view. User input is sent to the controllers which interprets and handles

the input and converts it into a specific command within the Command Subsystem, contained in the

command package. The controllers update the view with the appropriate view once the command is

executed. The Command Subsystem interacts with the models modifying and/or accessing the data.

Model data are stored in memory within LBMS. This memory can be queried using the Search

Subsystem, also contained within the search package, which is used for things such as a search

command.

The advantages of this design include separation of concerns using a model-view-controller architecture,

allowing the system to update the view at any time while keeping the interaction with the model

standardized and encapsulated, and the ability to run two different mode, API and GUI, while reusing

much of the code with common functionality. With the structure we have setup, it is easy to add

features to the system by following the MVC pattern. The disadvantage of our system is the large

number of packages and classes within them we used in order to follow design patterns.

SWEN-262 Library Book Management System Release 2 Team B

9

 2017-04-18

SUBSYSTEM DESIGN

COMMAND SUBSYSTEM

The Command Subsystem implements the command design pattern and is contained to the command

package. The main interface, Command, requires that all classes that implement it have an execute()

method that returns a String. The way we setup our classes the constructors all take in a request String,

and possibly an additional parameter for simplifying the String parsing, and store the data in the

command. Then when execute() is called the command interacts with the LBMS class to receive and/or

modify its data and generates a response string that follows the request/response format that was given

to us for this project. If the original request String is not properly formatted the constructors may throw

a MissingParametersException and the CommandController class will handle it. For R2 we added

another interface, Undoable, that extends the Command interface and adds a required method called,

unExecute(). Commands that implement this interface are able to be “undone” and “redone” by a user

of the system, the unExecute() method essentially reverses what was done in execute() and is used

when a command is “undone”.

There are several advantages to using this design for commands. First, a new developer can see the

direct correlation between each command and the accompanying request requirement from the project

website which makes it really simply to add commands to the system. Additionally each command’s

implementation is separated into its own class which follows the idea of separation of concerns. The

only disadvantage of using this pattern is the requirement that all commands must implement the

Command interface, which is not really an issue. Also it passed the responsibility of handling the request

formats to the CommandController by throwing a MissingParametersException.

SWEN-262 Library Book Management System Release 2 Team B

10

 2017-04-18

SWEN-262 Library Book Management System Release 2 Team B

11

 2017-04-18

Name: Library Commands GoF pattern: Command

Participants

Class Role in GoF

pattern

Participant's contribution in the context

of the application

Command Interface This interface is the template for the
concrete commands. It declares and
requires each command to implement the
execute() method. This method is common
to all commands and does not share a
common implementation.
Each concrete command initializes by

retrieving relevant information from an input

string.

Undoable Interface This interface extends the Command

interface. It adds functionality to a

command by requiring the unExecute()

method to reverse the execute() method

when it is “undone”.

MissingParameters

Exception

N/A Custom exception used by the constructors

of commands.

AdvanceTime ConcreteCommand This class defines the steps specific to

advancing the system time by some number

of days and hours.

BeginVisit ConcreteCommand This class defines the steps specific to

having a visitor begin a visit at the library.

BookPurchase ConcreteCommand This class defines the steps specific to

purchasing a book from the bookstore to

add to the library’s collection.

Borrow ConcreteCommand This class defines the steps specific to

having a visitor borrow an available book

from the library’s collection.

ClientConnect ConcreteCommand This class defines the steps specific to

connecting a client instance to the system.

CloseLibrary ConcreteCommand This class defines the steps specific to

closing the library at closing time.

CreateAccount ConcreteCommand This class defines the steps specific to

creating an account for a user to log in.

Specifically, this process creates username

and password credentials for an existing

visitor.

Disconnect ConcreteCommand This class defines the steps specific to

disconnecting a client instance from the

system.

SWEN-262 Library Book Management System Release 2 Team B

12

 2017-04-18

EndVisit ConcreteCommand This class defines the steps specific to

having a visitor end his or her visit to the

library.

FindBorrowed ConcreteCommand This class defines the steps specific to

finding the books currently borrowed from

the library by a particular visitor.

GetDateTime ConcreteCommand This class defines the steps specific to

retrieving the system date and time (which

may be different from the current date and

time).

Invalid ConcreteCommand This class defines the steps specific to

informing the user an invalid command

string was entered.

LibrarySearch ConcreteCommand This class defines the steps specific to

searching the library’s collection of books for

books matching input criteria.

LogIn ConcreteCommand This class defines the steps specific to

logging in a visitor to a client instance.

LogOut ConcreteCommand This class defines the steps specific to

logging out a visitor to a client instance.

PayFine ConcreteCommand This class defines the steps specific to

having a visitor who owes overdue book

fines pay those fines.

Redo ConcreteCommand This class defines the steps specific to

redoing an undoable command.

RegisterVisitor ConcreteCommand This class defines the steps specific to

having a new visitor register with the

system.

ResetTime ConcreteCommand This class defines the steps specific to

resetting the system time to the current date

and time.

Return ConcreteCommand This class defines the steps specific to

having a visitor return a book they have

borrowed.

SetBookService ConcreteCommand This class defines the steps specific to

setting the service that will be providing the

responses for the book purchase search

(either book.txt [local] or GoogleBooks

[google]).

StatisticsReport ConcreteCommand This class defines the steps specific to

generating a report of the current state of

the library.

SWEN-262 Library Book Management System Release 2 Team B

13

 2017-04-18

StoreSearch ConcreteCommand This class defines the steps specific to

searching the bookstore for books available

for purchase by the library which match

input criteria.

Undo ConcreteCommand This class defines the steps specific to

undoing an undoable command.

LBMS Receiver This class contains the state of the system

and therefore receives the actions executed

by the commands.

Deviations from the standard pattern: Addition of a second interface to

implement commands that can be “undone”.

 Custom exception that is thrown in constructors to signal an improper request

format that it was given.

Requirements being covered:

• The application must perform several different actions relating to application
content.

• All commands can be treated identically from the outside since they all have a

similar pattern of creation and execution. The execution is always handled in a

method named execute() and contains all steps required to properly perform the

action.

MODELS SUBSYSTEM

The Models Subsystem is just a grouping of all the models we implemented and their

interactions. These classes were separated into their own package to follow the MVC pattern

and to make it clear what was part of the system data. Each class stores different data required

by the system and all inherit from the Serializable interface, allowing them to persist across

startups. One class, SystemDateTime, implements the Singleton pattern, because there will only

ever be one instance of SystemDateTime. The State pattern is also implemented in the models

as the library itself is either in a closed or open state depending on the time of day. The state

the library is in changes the actions that can be performed.

SWEN-262 Library Book Management System Release 2 Team B

14

 2017-04-18

SWEN-262 Library Book Management System Release 2 Team B

15

 2017-04-18

Name: System Clock GoF pattern: Singleton

Participants

Class Role in GoF

pattern

Participant's contribution in the

context of the application

SystemDateTime Singleton This class is responsible for keeping track

of the system time for the library book

management system. It is run on a

separate thread to avoid an incorrect time

due to processing of the rest of the

program. When the system is started a

new system date time object is created,

after that the instance of the first created

one is returned to follow the singleton

pattern.

Deviations from the standard pattern: No deviations.

Requirements being covered: Only one instance of a class can be given at any time,
there can only be one clock for the system.

Name: Library State GoF pattern: State

Participants

Class Role in GoF

pattern

Participant's contribution in the context of

the application

LibraryState Interface This is the interface for all the state classes. It

requires a state class to have an isOpen()

method.

OpenState ConcreteState This class is used to represent the state of the

library between the hours of 0800 and 1900

(System Time).

ClosedState ConcreteState This class is used to represent the state of the

library between the hours of 1900 and 0800 the

following day (System Time). When in this state,

the library restricts access to commands.

Deviations from the standard pattern: None

Requirements being covered: The system only has one given state at a time and the
system can only complete certain actions from any given state, such as open and
closed functionality differing.

SWEN-262 Library Book Management System Release 2 Team B

16

 2017-04-18

SEARCH SUBSYSTEM

The Search Subsystem implements the Strategy design pattern, inheriting from a single interface, Search,

and implementing different algorithms in each subclass. The strategy design patterns allow us to add

additional searching algorithms quickly and efficiently, without having to modify the rest of the system.

We used two main classes, BookSearch and UserSearch, to search the system. Both of those classes

searched the local data of the program. For R2 we added another class, GoogleAPISearch, which uses

Google Books to find additional books that can be purchased. However, it does not implement the

Search interface and is not really part of the design pattern.

SWEN-262 Library Book Management System Release 2 Team B

17

 2017-04-18

Name: Search GoF pattern: Strategy

Participants

Class Role in GoF

pattern

Participant's contribution in the context of

the application

Search Interface This interface is used to declare the search() and

findFirst() methods to be implemented in the

concrete implementations. These methods are

common to all searches and contain the ability to

find all and find one object that matches given

criteria, respectively.

BookSearch ConcreteStrategy This class contains the steps specific to

searching for a book object in the system.

UserSearch ConcreteStrategy This class contains the steps specific to

searching for a user object in the system.

Deviations from the standard pattern:

 This implementation made use of Java enums to contain different ways of

searching for a particular object type within the same class, while keeping the

search for different types of objects in separate classes.

Requirements being covered:

• The application must provide the ability to search for objects in different ways,

depending on user input.

• Each class implementation provides different ways of searching while

representing a specific instance of the general action: search.

VIEWS SUBSYSTEM

The Views Subsystem plays two crucial roles in our system. It acts as the View element from our MVC

architecture, but also implements the State and Factory patterns. The Library Book Management System

can only have one mode at a time that is decided on with program arguments when run. The two

available modes of the system are API or GUI, API sends requests to the system and prints responses,

GUI launches the graphical user interface. The mode of the system is controlled by the ViewFactory

class, which uses the Factory pattern.

SWEN-262 Library Book Management System Release 2 Team B

18

 2017-04-18

Name: View State GoF pattern: State

Participants

Class Role in GoF

pattern

Participant's contribution in the context of the

application

View Interface This is the interface for all the state classes, it

requires a state class to have the run() method.

APIView ConcreteState This class is used for starting the API mode of the

Library Book Management System.

GUIView ConcreteState This class is used for starting the graphical user

interface of the Library Book Management

System.

Deviations from the standard pattern: None

Requirements being covered: The system can only run one mode at a time, either
API or GUI.

SWEN-262 Library Book Management System Release 2 Team B

19

 2017-04-18

Name: ViewFactory GoF pattern: Factory Method

Participants

Class Role in GoF

pattern

Participant's contribution in the context of the

application

ViewFactory ConcreteCreator This class selects the appropriate View and runs

it.

View Product This is the interface the ConcreteProducts must

implement.

APIView ConcreteProduct This class is used for starting the API mode of

the Library Book Management System.

GUIView ConcreteProduct This class is used for starting the graphical user

interface of the Library Book Management

System.

Deviations from the standard pattern: No interface used for the creator.

Requirements being covered: The system runs one of two modes, API or GUI, and

the specific subclass that it needs to create cannot be determined until runtime as it is

determined by the program arguments.

CONTROLLERS SUBSYSTEM

The Controllers Subsystem is contained in the controllers package and contains two sub packages,

commandproxy and guicontrollers. The commandproxy package is used to control the Command

Subsystem and incorporates the Proxy pattern. This allows us to determine if a command can be

executed based on user permissions, allowing visitors and employees to have different abilities within

the system. It also contains the ParseResponseUtility class which is not part of the design pattern, but is

used to take the information outputted by a command and format it for use with the GUI. The

guicontrollers package contains several sub-packages and classes that interact with the GUI, following

the MVC pattern. These controllers are the part of the system that connect the JavaFX code to the

Command Subsystem.

SWEN-262 Library Book Management System Release 2 Team B

20

 2017-04-18

C
o

m
m

an
d

C
o

n
tro

ller

Su
b

system

SWEN-262 Library Book Management System Release 2 Team B

21

 2017-04-18

SWEN-262 Library Book Management System Release 2 Team B

22

 2017-04-18

C
o

m
m

an
d

C
o

n
tro

ller

Su
b

system

SWEN-262 Library Book Management System Release 2 Team B

23

 2017-04-18

C
o

m
m

an
d

C
o

n
tro

ller

Su
b

system

SWEN-262 Library Book Management System Release 2 Team B

24

 2017-04-18

SWEN-262 Library Book Management System Release 2 Team B

25

 2017-04-18

SWEN-262 Library Book Management System Release 2 Team B

26

 2017-04-18

Name: Proxy Command GoF pattern: Proxy

Participants

Class Role in GoF

pattern

Participant's contribution in the

context of the application

ICommandController Subject Interface for the command controller,

requires the processRequest method

that takes a string as a parameter and

returns a string.

ProxyCommandController Proxy This class implements the

ICommandController interface. It checks

for the user’s status (Visitor or

Employee) and calls processRequest in

the CommandController if it allowable.

CommandController RealSubject This class also implements the
ICommandController interface. It creates
the appropriate command and executes
it, directly interacting with the
Command Subsystem.

Deviations from the standard pattern: None

Requirements being covered: Uses the Proxy design pattern to control how

commands are processed by the system based on the user and state of the library.

SWEN-262 Library Book Management System Release 2 Team B

27

 2017-04-18

SWEN-262 Library Book Management System Release 2 Team B

28

 2017-04-18

SWEN-262 Library Book Management System Release 2 Team B

29

 2017-04-18

SWEN-262 Library Book Management System Release 2 Team B

30

 2017-04-18

APPENDIX

Main

Class: LBMS

Responsibilities: The LBMS class is responsible for storing all data related to the library such
as the books, visitors, transactions, etc. Depending on the program argument given, the
program will use its API form or GUI form. This class is capable of saving updated data
through serialization after shutdown and deserialization during startup. When the LBMS is
started up with a clean slate, an initial admin account is created. It is also responsible for
parsing books.txt to create book objects that are available to buy from the book store. When
the LBMS is closed, some commands are not allowed to execute.

Collaborators

Uses: ProxyCommandController,
ViewFactory, Book, Employee, ISBN,
PhoneNumber, Session,
SystemDateTime, Transaction, Visit,
Visitor

Used by: BeginVisit, BookPurchase, Borrow,
ClientConnect, CreateAccount, Disconnect,
EndVisit, FindBorrowed, LibrarySearch, LogIn.
LogOut, Undo, Redo, RegisterVisitor, Return,
SetBookService, StatisticsReport, StoreSearch,
BookSearch, UserSearch, ViewFactory

Author: Edward Wong

SWEN-262 Library Book Management System Release 2 Team B

31

 2017-04-18

Commands

Class:
Command

Responsibilities: All commands used to change the data stored in the library inherit from this
interface. Each class inheriting from this interface implements a execute() method. The
execute() method manipulates the data according to the input.

Collaborators

Uses: None Used by: Undoable, AdvanceTime, BeginVisit, BookPurchase, Borrow,
ClientConnect, CloseLibrary, CreateAccount, Disconnect, EndVisit,
FindBorrowed, GetDateTime, Invalid, LibrarySearch, PayFine, RegisterVisitor,
ResetTime, Return, StatisticsReport, StoreSearch

Author: Edward Wong

Class: Undoable

Responsibilities: The Undoable interface extends the Command interface. Some commands
must be capable of being undone and redone. This interface requires these command classes
to implement an unExecute() method which basically does the opposite of the command’s
execute() method.

Collaborators

Uses: Command Used by: BeginVisit, BookPurchase, Borrow, EndVisit, PayFine,
Return

Author: Edward Wong

Class: AdvanceTime

Responsibilities: The AdvanceTime class manually moves the time forward based on the
number of days and/or number of hours inputted by the user. The user can choose from 0-7
days and 0-23 hours to advance the time. If the time was successfully advanced, the output
will display a success message. Otherwise, it will output a failure message with why it failed to
advance the time.

Collaborators

Uses: Command, SystemDateTime Used by: CommandController

Author: Edward Wong

Class: BeginVisit

SWEN-262 Library Book Management System Release 2 Team B

32

 2017-04-18

Responsibilities: This class is responsible for adding a visit to the LBMS. The user may give
a visitorID if they choose to. If the user is an employee, they can enter anyone’s visitorID as
long as it is valid. If the user is a visitor, they can only enter their own visitorID. If the visitorID
given does not exist within the LBMS or the visitor with the visitorID is already in the library, an
error message will be displayed to the user. If no visitorID is mentioned, the visitorID chosen is
the visitorID of the user using the client. If the visit was successfully started, a success
message will be displayed with the date and time the visit started. This command can be
undone and redone.

Collaborators

Uses: Command, Undoable, LBMS, ProxyCommandController,
SystemDateTime, Visit, Visitor, UserSearch

Used by:
CommandController

Author: Edward Wong

Class: BookPurchase

Responsibilities: The BookPurchase class allows books from the last store search to be
bought for library inventory. Using temporary book ID’s given to each book from the last store
search, the user can choose which books to buy along with the quantity. If the user uses an ID
that does not apply to any book returned from the last search, a failure message will be output.
If the LBMS already has the book in it’s inventory (a hashmap), the book object will be added
to the values of the proper ISBN (the key). Otherwise, a new key with the right ISBN is created
along with the book as its value. This command is undoable and redoable.

Collaborators

Uses: Command, Undoable, LBMS, Book Used by: CommandController

Author: Edward Wong

Class: Borrow

Responsibilities: The Borrow class enables books returned from the last library book search
to be checked out of the library. Checking out books are not permitted if the visitorID provided
does not exist, the visitor has an outstanding fine, the visitor already has five books checked
out, and/or the bookIDs given do not exist. If the books are borrowed with no errors, a success
message will be returned along with a due date, which is a week from the date the book was
borrowed. Otherwise, an error message is returned stating why the book(s) could not be
borrowed. This command is redoable and undoable.

Collaborators

Uses: Command, Undoable, LBMS, ProxyCommandController,
Book, SystemDateTime, Transaction, Visitor, UserSearch,
MissingParametersException

Used by:
CommandController

Author: Edward Wong

SWEN-262 Library Book Management System Release 2 Team B

33

 2017-04-18

Class: ClientConnect

Responsibilities: This class is responsible for starting a new client in order for a user to
access the LBMS. It starts a new session and adds that session to the LBMS.

Collaborators

Uses: Command, LBMS, Session Used by: CommandController

Author: Edward Wong

Class: CloseLibrary

Responsibilities: If the library is closed, some commands such as borrowing books and
beginning a visit are not possible so when a user tries to use these commands during closed
hours, CloseLibrary takes over and notifies the user that the library is closed and the original
command will not work.

Collaborators

Uses: Command Used by: CommandController

Author: Edward Wong

Class: CreateAccount

Responsibilities: The CreateAccount class makes a new account for a registered visitor. An
account consists of a username, password, role, and the visitorID of the visitor who will own
the account. The role can only be entered as “visitor” or “employee” This will decide the
permissions of the user. If the role is entered as neither of these words, an error message
occurs. An error message also occurs if the given visitorID does not exist.

Collaborators

Uses: Command, LBMS, Employee, Visitor,
MissingParametersException

Used by: CommandController

Author: Edward Wong

Class: Disconnect

Responsibilities: Using the clientID, this command disconnects a client. LBMS then removes
this session from its hashmap of stored sessions. If there is no session attached to the given
clientID, an error message appears.

Collaborators

SWEN-262 Library Book Management System Release 2 Team B

34

 2017-04-18

Uses: Command, LBMS Used by: CommandController

Author: Edward Wong

Class: EndVisit

Responsibilities: EndVisit removes a visitor from the library. It also adds a visit to the total
visits that the LBMS records. If the visitorID is not mentioned, the visitorID will be assumed to
be the visitorID of the user operating the client. It won’t work if the visitorID does not exist or
the visitor is not in the library. If it successfully ends a visit, the time the visit ends and the
duration of the visit is returned to the user. This command is undoable and redoable.

Collaborators

Uses: Command, Undoable, LBMS, ProxyCommandController,
SystemDateTime, Visit, Visitor, UserSearch

Used by:
CommandController

Author: Edward Wong

Class: FindBorrowed

Responsibilities: Given a valid visitorID, this command presents the number of books a
visitor has borrowed and which specific books were borrowed. If the visitorID is not given, the
visitorID of the user operating the client will be used. If the visitorID does not exist, then an
error message is returned. This class prepares the returned books for the “return” command
as they are given a temporary ID.

Collaborators

Uses: Command, LBMS, Book, Transaction, Visitor,
BookSearch, UserSearch

Used by: CommandController

Author: Edward Wong

Class: GetDateTime

Responsibilities: GetDateTime simply outputs the current LBMS date and time.

Collaborators

Uses: Command, SystemDateTime Used by: CommandController

Author: Edward Wong

Class: Invalid

SWEN-262 Library Book Management System Release 2 Team B

35

 2017-04-18

Responsibilities: This class handles inputted “commands” that the LBMS is not supposed to
accept. A message stating that the “command” is invalid is output if the user enters a false
command.

Collaborators

Uses: Command Used by: ControllerCommand

Author: Edward Wong

Class: LibrarySearch

Responsibilities: This class is responsible for returning specific books according to user
input. Specifications include the isbn, title, authors, publisher, and sort order but the user can
omit some fields of the search if they choose to do so by using a “*”. The search results can
only be ordered by title, publish date, and availability. If the user inputs a different kind of sort
method, an error message is output. Each book returned from the search are prepared for
borrowing by being given a temporary ID.

Collaborators

Uses: Command, LBMS, Book, ISBN, BookSearch,
MissingParametersException

Used by: CommandController

Author: Edward Wong

Class: LogIn

Responsibilities: This class allows a visitor or employee to log in into their LBMS account.
The session operating will be obtained from the LBMS and the visitor logging in will be
attached to it. If they input an invalid username and/or password, an error message will be
presented to the user.

Collaborators

Uses: LBMS, Visitor, MissingParametersException Used by: CommandController

Author: Edward Wong

Class: LogOut

Responsibilities: This class logs a visitor or employee out of their account with a given
clientID. The session operating is obtained from the LBMS and the visitor that is attached to
that session detached from it. If the clientID is not valid, an error message will appear.

Collaborators

Uses: LBMS, Session Used by: CommandController

SWEN-262 Library Book Management System Release 2 Team B

36

 2017-04-18

Author: Edward Wong

Class: MissingParametersException

Responsibilities: This class is an exception class used when a given request is missing
required parameters. If the user does not input all needed parameters for a command, the
exception comes in and returns a message stating that the request is missing parameters and
which parameters are missing.

Collaborators

Uses: None Used by: Borrow, EndVisit, LibrarySearch, LogIn,
RegisterVisitor, StatisticsReport, StoreSearch

Author: Edward Wong

Class: PayFine

Responsibilities: PayFine allows visitors’ fines to be paid. Given a valid amount and visitorID
from the user, the amount will be subtracted from the visitor’s total balance and the remaining
balance will be returned. If a visitorID is not in the request, it will assumed to be the visitorID of
the user operating the current client. If the visitorID given does not exist, an error message will
appear. An error message also appears if the entered amount to pay is negative or exceeds
the visitor’s total balance. This command is undoable and redoable.

Collaborators

Uses: Command, UserSearch Used by: CommandController

Author: Edward Wong

Class: Undo

Responsibilities: This class allows for the undoing of some commands. These commands
include beginning a visit, purchasing a book, borrowing a book, ending a visit, paying a fine,
and returning a book. The only times where this command will not work is when the undo
stack is empty (none of the previous commands have been executed) or when you attempt to
undo after a search clears the undo and redo stacks.

Collaborators

Uses: LBMS Used by: CommandController

Author: Edward Wong

Class: Redo

SWEN-262 Library Book Management System Release 2 Team B

37

 2017-04-18

Responsibilities: The Redo class allows certain commands that were undone to be redone.
The only times this command will not work is when there is no commands in the redo stack
(no commands have been undone) or when a new search has cleared out both the redo and
undo stack. When this is the case, an error message is returned.

Collaborators

Uses: LBMS Used by: CommandController

Author: Edward Wong

Class: RegisterVisitor

Responsibilities: This class is responsible for adding a new visitor to the LBMS. With a
name, address, and phone number given, the information is stored in the LBMS (in a
hashmap) and the date and time of the register is returned. If the name, address, and phone
number of an already registered visitor is inputted again, an error message appears. However,
registering a visitor can be successful as long as at least one field is different from all already
registered visitors.

Collaborators

Uses: Command, LBMS, PhoneNumber, SystemDateTime,
Visitor, UserSearch, MissingParametersException

Used by:
CommandController

Author: Edward Wong

Class: ResetTime

Responsibilities: This class is used for testing purposes. It automatically updates the date
and time stored in the LBMS to the current date and time.

Collaborators

Uses: Command, SystemDateTime Used by: CommandController

Author: Edward Wong

Class: Return

Responsibilities: This class allows checked out books to be returned. Given a valid visitorID
and ID returned from the “borrowed” command, the borrowed book will be added back into the
LBMS inventory. If the visitorID is not given, the visitorID of the user operating the client will be
used. If the book is returned overdue, a fine will be added to the visitor’s total balance and the
overdue books are not returned until the fines have been paid. Error messages can occur if
the given visitorID or book IDs do not exist. Even if one book ID is not valid, the whole
command is cancelled.

Collaborators

SWEN-262 Library Book Management System Release 2 Team B

38

 2017-04-18

Uses: Command, Undoable, LBMS, Book,
SystemDateTime, Transaction, Visitor, UserSearch

Used by: CommandController

Author: Edward Wong

Class: SetBookService

Responsibilities: This class is responsible for enabling the user to switch between the local
book service and the Google Books service. The local book service contains the books parsed
from books.txt while the Google Books service contains books obtained with the Google API.
This command obtains the current session and changes the service to search from. If the user
enters a service other than “local” and “google,” an error message appears.

Collaborators

Uses: LBMS, MissingParameterException Used by: CommandController

Author: Edward Wong

Class: StatisticsReport

Responsibilities: The StatisticsReport class provides different stats on library usage. This
includes the total number of books in the library, total number of registered visitors, the
average length of a visit, the number of books purchased, the amount of fines collected, and
the amount of fines that still need to be collected. If a certain number of days is input, the
report only includes the stats covering those number of days. If the number of days is omitted,
the report covers all statistics recorded since the beginning of the simulation.

Collaborators

Uses: Command, LBMS, Book, SystemDateTime, Visit,
Visitor, MissingParametersException

Used by:
CommandController

Author: Edward Wong

Class: StoreSearch

Responsibilities: The responsibility of this class is to find books in the book store that fit
inputted specifications. These specifications include the title, authors, ISBN, publisher, and
sort order. The results can only be sorted by title and publish date (most recent first). If the
user tries to sort the results in a different way, an error message is returned stating that the
mentioned method of sorting is invalid. Like in LibrarySearch, any field may be omitted by
inputting a “*” in its place. The books returned from the search are prepared for purchase by
being given a temporary ID.

Collaborators

SWEN-262 Library Book Management System Release 2 Team B

39

 2017-04-18

Uses: Command, LBMS, Book, ISBN, BookSearch,
GoogleAPISearch, MissingParametersException

Used by:
CommandController

Author: Edward Wong

SWEN-262 Library Book Management System Release 2 Team B

40

 2017-04-18

Controllers

Class: ICommandController

Responsibilities: This interface defines the functionality required by the CommandController
and its proxy. The parseResponse() method is required to be defined by classes implementing
this interface. This method is used to take in a request string and subsequently output the
proper response, usually involving multiple checks on the state, type, and validity of the
request.

Collaborators

Uses: None Used by: CommandController,
ProxyCommandController

Author: Charles Barber

Class: ProxyCommandController

Responsibilities: This class is used to implement a protection proxy. It restricts access to the
CommandController based on the authorization status of the user/command type pairing. In
this way, a check is performed and a response is generated without a command object ever
being created. This proxy is always used to access the underlying CommandController and
calls the CommandController if appropriate.

Collaborators

Uses: LBMS, Invalid, Visitor, Employee, Session,
Visit, SystemDateTime

Used by: LBMS, BeginVisit, Borrow,
EndVisit, APIView, SessionManager

Author: Charles Barber

Class: ParseResponseUtility

Responsibilities: Utility class designed to provide a centralized location for parsing all types
of response strings into a useable format. Mainly used by the views to parse response data to
be displayed in the GUI.

Collaborators

Uses: Book, BookSearch Used by: SessionManager

Author: Charles Barber

Class: AccountCreatedController

SWEN-262 Library Book Management System Release 2 Team B

41

 2017-04-18

Responsibilities: This class handles the GUI view for the page displayed after the user has
created an account. Once an account has been created, a confirmation page is displayed with
detail about the action that just occurred. This class is responsible for displaying that page.
Also on this page is the option to return to the main screen by pressing a finish button. This
class handles the event execution of the button press and directs the system display back to
the main screen.

Collaborators

Uses: StateController, SessionManager Used by: CreateController

Author: Charles Barber

Class: CreateController

Responsibilities: This class handles the GUI view for the page used to create an account.
The page to create an account displays relevant text input fields as well as create and cancel
buttons. This class handles the submission of the input fields as well as the event execution of
each button press. As all the fields are required, this class will prevent execution on
incomplete data and will output an error message to the user when applicable. It should be
noted that this class is directly related to the CreateAccount command class and therefore
generates the appropriate request and interprets the response for that command.

Collaborators

Uses: ParseResponseUtility,
ProxyCommandController, StateController,
SessionManager

Used by:
VisitorRegisteredController

Author: Charles Barber

Class: RegisterController

Responsibilities: This class handles the GUI view for the page used to register a visitor. The
page to create an account displays relevant text input fields as well as register and cancel
buttons. This class handles the submission of the input fields as well as the event execution of
each button press. As all the fields are required, this class will prevent execution on
incomplete data and will output an error message to the user when applicable. It should be
noted that this class is directly related to the RegisterVisitor command class and therefore
generates the appropriate request and interprets the response for that command.

Collaborators

Uses: ParseResponseUtility, ProxyCommandController, StateController,
SessionManager

Used by:
None

Author: Charles Barber

SWEN-262 Library Book Management System Release 2 Team B

42

 2017-04-18

Class: VisitorRegisteredController

Responsibilities: This class handles the GUI view for the page displayed after the user has
registered a visitor. Once visitor has been registered, a confirmation page is displayed with
detail about the action that just occurred. This class is responsible for displaying that page.
Also on this page is the option to return to the main screen by pressing a finish button. This
class handles the event execution of the button press and directs the system display back to
the main screen.

Collaborators

Uses: StateController, SessionManager Used by: RegisterController

Author: Charles Barber

Class: BookReturnedController

Responsibilities: This class handles the GUI view for the page displayed after the user has
successfully returned a book. Once one or more books are returned, a confirmation page is
displayed with detail about the action that just occurred. This class is responsible for
displaying that page. Also on this page is the option to return to the main screen by pressing a
finish button. This class handles the event execution of the button press and directs the
system display back to the main screen.

Collaborators

Uses: StateController, SessionManager Used by: None

Author: Charles Barber

Class: BorrowedResultController

Responsibilities: This class is used to link a book from the borrowed book query to a
checkbox which can then be displayed in the GUI. When a user looks for all the books they
have currently borrowed from the library, a checklist is displayed in the GUI. This class
handles the display of a book as a checkbox.

Collaborators

Uses: SessionManager Used by: PayFineController,
ReturnBookController

SWEN-262 Library Book Management System Release 2 Team B

43

 2017-04-18

Author: Charles Barber

Class: PayFineController

Responsibilities: This class handles the GUI view for the page used to pay overdue fines.
This page can only be accessed after an attempt to return a book has revealed a late fee for
one or more of the books currently borrowed by the visitor. It should be noted that this class is
directly related to the PayFine command class and therefore generates the appropriate
request and interprets the response for that command.

Collaborators

Uses: ParseResponseUtility, ProxyCommandController,
SessionManager

Used by: ReturnBookController

Author: Charles Barber

Class: PaymentSuccessController

Responsibilities: This class handles the GUI view for the page displayed after the user has
successfully payed a fine. Once a fine is paid, a confirmation page is displayed with detail
about the action that just occurred. This class is responsible for displaying that page. Also on
this page is the option to return to the main screen by pressing a finish button. This class
handles the event execution of the button press.

Collaborators

Uses: None Used by: PayFineController

Author: Charles Barber

Class: ReturnBookController

Responsibilities: This class handles the GUI view for the page used to return borrowed
library books. The page displayed to return books contains input in the form of checkboxes
and button presses. This class handles the event execution for these items as well as checks
the submission status of any text fields. It should be noted that this class is directly related to
the Return command class and therefore generates the appropriate request and interprets the
response for that command.

Collaborators

Uses: ProxyCommandController, ParseResponseUtility, SessionManager,
StateController

Used by:
None

SWEN-262 Library Book Management System Release 2 Team B

44

 2017-04-18

Author: Charles Barber

Class: BookInfoController

Responsibilities: This class handles the GUI view for the page used to display the results of
a book search. From the results of a book search, a user can perform actions on those results
such as borrowing and purchasing (the latter only if the user is an employee). It should be
noted that this class is directly related to the Borrow and PurchaseBook command classes and
therefore generates the appropriate requests and interprets the responses for those
commands.

Collaborators

Uses: ProxyCommandController, ParseResponseUtility,
SessionManager

Used by: SearchResultController

Author: Charles Barber

Class: BorrowSuccessController

Responsibilities: This class handles the GUI view for the page displayed after the user has
successfully borrowed a book. Once one or more books are borrowed, a confirmation page is
displayed with detail about the action that just occurred. This class is responsible for
displaying that page, specifically, as a pop-up window.. Also on this page is the option to exit
the popup window displays. This class handles the event execution of the close button press.

Collaborators

Uses: None Used by: BookInfoController

Author: Charles Barber

Class: LibrarySearchController

Responsibilities: This class handles the GUI view for the page used to search the library for
books. Both input fields and buttons exist on this page. This controller class handles the
submission of the input fields and the action execution of any existing buttons. It should be
noted that this class is directly related to the LibrarySearch command class and therefore
generates the appropriate request and interprets the response for that command.

Collaborators

Uses: ProxyCommandController,
ParseResponseUtility, SessionManager,
StateController

Used by: MainEmployeeController,
MainVisitorController

SWEN-262 Library Book Management System Release 2 Team B

45

 2017-04-18

Author: Charles Barber

Class: PurchaseSuccessController

Responsibilities: This class handles the GUI view for the page displayed after the user has
successfully purchased a book. Once one or more books are purchased, a confirmation page
is displayed with detail about the action that just occurred. This class is responsible for
displaying that page, specifically, as a pop-up window. Also on this page is the option to exit
the popup window displays. This class handles the event execution of the close button press.

Collaborators

Uses: None Used by: BookInfoController

Author: Charles Barber

Class: SearchResultController

Responsibilities: This class is used to display a specific search result in the GUI. This search
result is specifically resulting from a book search of either the library or the store.

Collaborators

Uses: SessionManager Used by: LibrarySearchController,
StoreSearchController

Author: Charles Barber

Class: StoreSearchController

Responsibilities: This class handles the GUI view for the page used to search the store for
books. Both input fields and buttons exist on this page. This controller class handles the
submission of the input fields and the action execution of any existing buttons. It should be
noted that this class is directly related to the LibrarySearch command class and therefore
generates the appropriate request and interprets the response for that command. Similarly,
this class is related to the SetBookService command class as the option to set the book
service is included on the same page as the store search for convenience.

Collaborators

Uses: ProxyCommandController, ParseResponseUtility,
SessionManager, StateController

Used by:
MainEmployeeController

Author: Charles Barber

SWEN-262 Library Book Management System Release 2 Team B

46

 2017-04-18

Class: BeginVisitController

Responsibilities: This class handles the GUI view for beginning a visit. An employee can
begin a visit for any visitor and therefore this class must display and handle the submission of
a text field. It should be noted that this class is directly related to the BeginVisit command
class and therefore generates the appropriate request and interprets the response for that
command.

Collaborators

Uses: ProxyCommandController, ParseResponseUtility, SessionManager,
StateController

Used by:
None

Author: Charles Barber

Class: EndVisitController

Responsibilities: This class handles the GUI view for ending a visit. An employee can end a
visit for any visitor and therefore this class must display and handle the submission of a text
field. It should be noted that this class is directly related to the EndVisit command class and
therefore generates the appropriate request and interprets the response for that command.

Collaborators

Uses: ProxyCommandController, ParseResponseUtility, SessionManager,
StateController

Used by:
None

Author: Charles Barber

Class: VisitBegunController

Responsibilities: This class handles the GUI view for the page displayed after the user has
successfully begun a visit. Once a visit has been started, a confirmation page is displayed with
detail about the action that just occurred. This class is responsible for displaying that page,
specifically, as a pop-up window. Also on this page is the option to exit the popup window
displays. This class handles the event execution of the close button press.

Collaborators

Uses: SessionManager, StateController Used by: BeginVisitController

Author: Charles Barber

Class: VisitEndedController

SWEN-262 Library Book Management System Release 2 Team B

47

 2017-04-18

Responsibilities: This class handles the GUI view for the page displayed after the user has
successfully ended a visit. Once a visit has ended, a confirmation page is displayed with detail
about the action that just occurred. This class is responsible for displaying that page,
specifically, as a pop-up window. Also on this page is the option to exit the popup window
displays. This class handles the event execution of the close button press.

Collaborators

Uses: SessionManager, StateController Used by: EndVisitController

Author: Charles Barber

Class: SystemController

Responsibilities: This class handles the GUI view for the entire system settings page. This
page is only accessible as an employee and can be used to perform any system action
through a built in command line. Additionally, this page has input fields and buttons for
generating a system report and advancing the system time. All field submissions are handled
by this class along with all event actions from button presses. It should be noted that this class
is directly related to the any command class through the built in command line and therefore
generates the appropriate request and interprets the response for any command. Also note
that this class automatically prepends the clientID to what is entered in the command line and
so this input is unnecessary to perform manually.

Collaborators

Uses: ParseResponseUtility, ProxyCommandController, SessionManager Used by: None

Author: Charles Barber

Class: ClientController

Responsibilities: This class handles the GUI view for the initial client connection. Each client
connection is housed within its own UI tab. This class initializes each tab and informs the
SessionManager which page to display on tab startup, namely login. Additionally, this class is
responsible for the part of the GUI which is shared among all client connections. The most
notable of which being the system clock in the bottom right corner and the menu bar at the
top. This class is also responsible for handling hotkey input (e.g. CTRL-T open a new tab).

Collaborators

Uses: CommandContoller, SessionManager Used by: GUIView

Author: Charles Barber

Class: LoginController

SWEN-262 Library Book Management System Release 2 Team B

48

 2017-04-18

Responsibilities: This class handles the GUI view for user login. The first page shown in any
new tab prompts for username and password fields and allows the user to submit input. This
class handles the submission of input fields through the event action of the button press. As all
the fields are required, this class will prevent execution on incomplete data and will output an
error message to the user when applicable. It should be noted that this class is directly related
to the LogIn command class and therefore generates the appropriate request and interprets
the response for that command.

Collaborators

Uses: ParseResponseUtility, ProxyCommandController, SessionManager Used by: None

Author: Charles Barber

Class: MainEmployeeController

Responsibilities: This class handles the GUI view for the main employee screen. This screen
is displayed upon successful employee login and is the “home screen” for all further GUI
interaction. This class is responsible for handling event execution for buttons displayed. Most
of these executions simply change the view and accompanying controller. This class is also
responsible for handling a search inputted from the text fields displayed on the main page.
This handling involves delegation to the appropriate controller for request and response
processing as well as a change in view.

Collaborators

Uses: ProxyCommandController, LibrarySearchController,
StoreSearchController, SessionManager

Used by:
None

Author: Charles Barber

Class: MainVisitorController

Responsibilities: This class handles the GUI view for the main visitor screen. This screen is
displayed upon successful visitor login and is the “home screen” for all further GUI interaction.
This class is responsible for handling event execution for buttons displayed. Most of these
executions simply change the view and accompanying controller, however, some button
actions are directly related to commands. In order to handle the execution of these button
presses, this class generates the request and interprets the response for appropriate
commands. This class is also responsible for handling a search inputted from the text field
displayed on the main page. This handling involves delegation to the appropriate controller for
request and response processing as well as a change in view. It should be noted that this
class handles a simplified employee view which is presented to the visitor. In this way, the
actions of the visitor are limited to those he or she is authorized to perform.

Collaborators

Uses: ParseResponseUtility, ProxyCommandController,
LibrarySearchController, SessionManager

Used by:
None

SWEN-262 Library Book Management System Release 2 Team B

49

 2017-04-18

Author: Charles Barber

Class:
StateController

Responsibilities: This interface unites controllers under the pretense that they are each
handle events for a specific system state. This interface requires those classes which
implement it to define an initManager() method which ties the controller to the
SessionManager.

Collaborators

Uses:
SessionManager

Used by: SessionManager, AccountCreatedController, CreateController,
RegisterController, VisitorRegisteredController, BookReturnedController,
BorrowedResultController, PayFineController, PaymentSuccessController,
ReturnBookController, BookInfoController, BorrowSuccessController,
LibrarySearchController, PurchaseSuccessController,
SearchResultController, StoreSearchController, BeginVisitController,
EndVisitController, VisitBegunController, VisitEndedController,
LoginController, MainEmployeeController, MainVisitorController,
SystemController

Author: Charles Barber

SWEN-262 Library Book Management System Release 2 Team B

50

 2017-04-18

Models

Class: Book

Responsibilities: This class holds the state and behaviors for a book object. A book has a
title, publisher, ISBN, publish date, and a purchase date. The total number of copies of the
book that is in library is also tracked along with the number of copies checked out. A book can
be purchased, checked out/borrowed, and returned.

Collaborators

Uses: None Used by: LBMS, BookPurchase, Borrow, FindBorrowed, LibrarySearch,
Return, StatisticsReport, StoreSearch, BookSearch

Author: Team B

Class: LibraryState

Responsibilities: This interface holds a method isOpen(). The classes inheriting from it
determines if the library is open or closed.

Collaborators

Uses: None Used by: ClosedState, OpenState

Author: Team B

Class: ClosedState

Responsibilities: This class inherits from LibraryState to show that the library is closed.

Collaborators

Uses: LibraryState Used by: ProxyCommandController

Author: Team B

Class: OpenState

Responsibilities: This class inherits from LibraryState to show that the library is open.

Collaborators

Uses: LibraryState Used by: ProxyCommandController

Author: Team B

SWEN-262 Library Book Management System Release 2 Team B

51

 2017-04-18

Class: Employee

Responsibilities: This class holds the state and behaviors for an employee. The only state an
employee has is a visitor as employees are considered visitors also.

Collaborators

Uses: None Used by: CreateAccount

Author: Team B

Class: ISBN

Responsibilities: This class stores the ISBN of a book. The methods in ISBN check if the
given ISBN is valid in its 10 digit and 13 digit forms. There is also an equals() method that
checks if two ISBNs are equal which is used in book searching.

Collaborators

Uses: None Used by: LBMS, LibrarySearch, StoreSearch

Author: Team B

Class: PhoneNumber

Responsibilities: This class holds the state for a phone number. A phone number has the
areaCode (first 3 digits), the exchangeCode (the 3 digits after), and the extension which is the
last 4 digits. The class also has a toString() method to convert the phone number into a string.

Collaborators

Uses: None Used by: LBMS, RegisterVisitor

Author: Team B

Class: Session

Responsibilities: When a user logins into their account, they start a session. Each session
has its own clientID, an associated visitor, the type of service (local or Google), a stack to hold
commands to undo, a second stack to hold commands to redo, and a bookSearch arraylist
which holds the books from the last search.

Collaborators

Uses: None Used by: LBMS, ClientConnect, LogOut

Author: Team B

SWEN-262 Library Book Management System Release 2 Team B

52

 2017-04-18

Class:
SystemDateTime

Responsibilities: This class is a custom made datetime class for the LBMS. It is used to store
the system’s date and time. Through this class, the system time can be advanced but the time
can functions on its own like a real clock.

Collaborators

Uses: None Used by: LBMS, AdvanceTime, BeginVisit, Borrow, EndVisit,
GetDateTime, RegisterVisitor, ResetTime, Return, StatisticsReport

Author: Team B

Class: Transaction

Responsibilities: This class has the state and behaviors for a transaction object. A
transaction holds the ISBN of the book checked out, the visitorID of the visitor who checked
out the book, the date of the checkout, and the date the book checked out is due. It is also
able to calculate the fines that an overdue book has.

Collaborators

Uses: None Used by: LBMS, Borrow, FindBorrowed, Return

Author: Team B

Class: Visit

Responsibilities: This class has the state and behaviors of a Visit object. A visit object
possesses a visitor, the date and time the visit started, the time the visit ended, and the
duration of the visit. It's only behavior is ending a visit where it calculates when the visitor
leaves and the duration of visit. It also removes the visitor from the library in the LBMS.

Collaborators

Uses: None Used by: LBMS, BeginVisit, EndVisit

Author: Team B

Class:
Visitor

Responsibilities: This class holds the state and behavior of a Visitor object. The state
includes the name, address, phone number and visitorID of the visitor. It also tracks what
books they have checked out, whether they are currently in the library or not, and their fines. A
visitor can only check out books as long as they have less than 5 books checked out and they
have no outstanding fines. Of course, the visitor is able to return their borrowed books unless

SWEN-262 Library Book Management System Release 2 Team B

53

 2017-04-18

their books are overdue. If they are overdue, the visitor’s total fines increases based on the
fines stored in the transactions. After the visitor has completely paid all of their fines, they can
finally return their books.

Collaborators

Uses:
LBMS

Used by: LBMS, BeginVisit, Borrow, CreateAccount, EndVisit, FindBorrowed,
LogIn, RegisterVisitor, Return, StatisticsReport, UserSearch

Author: Team B

SWEN-262 Library Book Management System Release 2 Team B

54

 2017-04-18

Search

Class: Search

Responsibilities: Search is a generic interface to facilitate the two classes that implement it
(BookSearch and UserSearch). It contains two main methods, findAll() and findFirst(). FindAll()
finds all objects that fit the criteria given in a search while findFirst() only finds the first object
that matches. This interface has two other methods, createPredicate() and filterStream() which
aids in searching.

Collaborators

Uses: None Used by: BookSearch, UserSearch

Author: Nicholas Feldman

Class: BookSearch

Responsibilities: BookSearch implements the Search interface to find books based on given
specifications. It allows books to be searched in different ways such as authors, ISBN, title,
and publisher. This class implements the createPredicate() and filterStream() methods in the
Search

Collaborators

Uses: Search, LBMS, Book Used by: BookPurchase, FindBorrowed, LibrarySearch,
StoreSearch

Author: Nicholas Feldman

Class: GoogleAPISearch

Responsibilities: This class allows the user to search the Google Books API. They can
search for books by title, author, ISBN, and publisher. The class uses a URL to retrieve JSON
data from Google Books which is then parsed to form a list of Book objects.

Collaborators

Uses: None Used by: StoreSearch

Author: Nicholas Feldman

Class: UserSearch

Responsibilities: UserSearch is similar to BookSearch except it searches for visitors instead
of books. It can search for visitors by id, name, address, or phone number.

Collaborators

SWEN-262 Library Book Management System Release 2 Team B

55

 2017-04-18

Uses: Search, LBMS,
Visitor

Used by: BeginVisit, Borrow, EndVisit, FindBorrowed, PayFine,
RegisterVisitor, Return, RegisterVisitor, Return

Author: Nicholas Feldman

SWEN-262 Library Book Management System Release 2 Team B

56

 2017-04-18

Views

Class: View

Responsibilities: The View interface only has one method, run() which is used to start a view.

Collaborators

Uses: None Used by: APIView, GUIView

Author: Edward Wong

Class: ViewFactory

Responsibilities: This class uses the StartType held in the LBMS to determine what view to
run. There are only two views to choose from: API and GUI.

Collaborators

Uses: LBMS, APIView, GUIView Used by: LBMS

Author: Edward Wong

Class: APIView

Responsibilities: This class establishes the initial API view of LBMS. From here, the
ProxyCommandController takes in user input and processes the inputted requests in order to
execute commands.

Collaborators

Uses: ProxyCommandController, View Used by: ViewFactory

Author: Edward Wong

Class: GUIView

Responsibilities: This class establishes the GUI view of LBMS. It also has a stop() method to
discontinue the view. After starting, the user can begin to interact with GUI.

Collaborators

Uses: ClientController, View Used by: ViewFactory

Author: Edward Wong

Class: SessionManager

SWEN-262 Library Book Management System Release 2 Team B

57

 2017-04-18

Responsibilities: This class operates a session (aka a tab in the GUI). It holds a close()
method which log outs the visitor logged into the session and the client disconnects. It has
other methods to display the session and to load a file to format the GUI.

Collaborators

Uses: ParseResponseUtility,
ProxyCommandController,
StateController

Used by: LoginController, MainEmployeeController,
MainVisitorController, SystemController,
AccountCreatedController, CreateController,
RegisterController, VisitorRegisteredController,
BookReturnedController, BorrowedResultController,
PayFineController, ReturnBookController,
BookInfoController, LibrarySearchController,
SearchResultController, StoreSearchController,
BeginVisitController, EndVisitController,
VisitBegunController, VisitEndedController, ClientController

Author: Edward Wong

